Problem:
0(1(1(x1))) -> 1(2(1(2(0(x1)))))
0(3(1(x1))) -> 1(3(2(2(0(x1)))))
0(3(1(x1))) -> 3(2(1(2(0(x1)))))
0(3(1(x1))) -> 1(3(3(3(2(0(x1))))))
0(4(1(x1))) -> 2(1(2(0(4(x1)))))
0(0(4(5(x1)))) -> 0(0(2(5(4(x1)))))
0(1(4(1(x1)))) -> 0(1(2(2(4(1(x1))))))
0(1(4(5(x1)))) -> 4(0(1(2(5(4(x1))))))
0(1(5(1(x1)))) -> 1(2(2(5(0(1(x1))))))
0(1(5(3(x1)))) -> 0(5(3(2(1(x1)))))
0(2(4(1(x1)))) -> 1(3(3(2(0(4(x1))))))
0(2(4(1(x1)))) -> 4(2(1(2(0(4(x1))))))
0(2(4(5(x1)))) -> 0(2(2(5(0(4(x1))))))
0(3(1(5(x1)))) -> 0(1(2(5(3(x1)))))
0(3(1(5(x1)))) -> 1(2(5(3(0(4(x1))))))
0(3(5(1(x1)))) -> 1(2(5(3(0(x1)))))
0(3(5(1(x1)))) -> 0(5(2(1(2(3(x1))))))
0(3(5(5(x1)))) -> 0(3(2(5(5(x1)))))
0(4(0(1(x1)))) -> 2(0(4(4(0(1(x1))))))
0(4(1(5(x1)))) -> 1(2(5(0(4(x1)))))
0(4(3(5(x1)))) -> 0(4(3(2(5(4(x1))))))
0(4(5(1(x1)))) -> 2(5(4(4(0(1(x1))))))
3(0(1(5(x1)))) -> 3(1(4(0(5(4(x1))))))
3(0(3(1(x1)))) -> 1(3(3(2(0(x1)))))
3(0(3(5(x1)))) -> 3(2(5(0(2(3(x1))))))
3(3(0(1(x1)))) -> 0(1(3(2(2(3(x1))))))
3(4(5(1(x1)))) -> 3(2(5(4(2(1(x1))))))
4(1(3(5(x1)))) -> 1(2(5(3(4(4(x1))))))
4(1(5(1(x1)))) -> 4(4(5(1(2(1(x1))))))
4(4(1(5(x1)))) -> 4(1(2(5(4(x1)))))
0(1(4(5(5(x1))))) -> 0(5(1(4(2(5(x1))))))
0(2(1(4(5(x1))))) -> 0(0(1(2(5(4(x1))))))
0(2(1(5(5(x1))))) -> 0(1(2(2(5(5(x1))))))
0(4(2(4(1(x1))))) -> 1(3(2(0(4(4(x1))))))
0(4(5(4(3(x1))))) -> 2(5(0(4(4(3(x1))))))
0(5(1(5(1(x1))))) -> 0(5(1(1(2(5(x1))))))
0(5(2(1(5(x1))))) -> 1(2(5(5(0(4(x1))))))
0(5(2(4(1(x1))))) -> 4(5(2(1(2(0(x1))))))
3(0(1(4(1(x1))))) -> 0(4(4(1(3(1(x1))))))
3(0(1(4(1(x1))))) -> 4(3(2(0(1(1(x1))))))
3(0(3(5(5(x1))))) -> 3(3(2(5(0(5(x1))))))
3(0(5(3(1(x1))))) -> 1(0(3(3(2(5(x1))))))
4(0(1(4(1(x1))))) -> 4(4(0(1(3(1(x1))))))
4(0(1(5(1(x1))))) -> 0(1(2(5(4(1(x1))))))
4(0(2(4(5(x1))))) -> 4(0(2(5(0(4(x1))))))
4(1(1(5(1(x1))))) -> 1(1(2(5(4(1(x1))))))
4(5(1(4(1(x1))))) -> 4(4(1(2(1(5(x1))))))
4(5(2(3(1(x1))))) -> 4(3(1(2(2(5(x1))))))
4(5(4(3(1(x1))))) -> 4(1(2(5(3(4(x1))))))
4(5(5(3(1(x1))))) -> 1(3(2(5(5(4(x1))))))
Proof:
Bounds Processor:
bound: 2
enrichment: match
automaton:
final states: {6,5,4}
transitions:
11(80) -> 81*
11(37) -> 38*
11(32) -> 33*
11(9) -> 10*
11(131) -> 132*
11(111) -> 112*
11(81) -> 82*
11(46) -> 47*
11(11) -> 12*
11(68) -> 69*
11(43) -> 44*
11(120) -> 121*
11(110) -> 111*
21(45) -> 46*
21(35) -> 36*
21(10) -> 11*
21(67) -> 68*
21(119) -> 120*
21(109) -> 110*
21(79) -> 80*
21(121) -> 122*
21(66) -> 67*
21(8) -> 9*
21(130) -> 131*
51(65) -> 66*
51(97) -> 98*
51(82) -> 83*
51(77) -> 78*
51(47) -> 48*
51(64) -> 65*
51(34) -> 35*
51(96) -> 97*
51(71) -> 72*
51(108) -> 109*
51(135) -> 136*
41(107) -> 108*
41(134) -> 135*
41(99) -> 100*
41(94) -> 95*
41(49) -> 50*
41(133) -> 134*
41(48) -> 49*
41(105) -> 106*
01(147) -> 148*
01(7) -> 8*
01(69) -> 70*
01(21) -> 22*
01(33) -> 34*
01(23) -> 24*
01(95) -> 96*
12(143) -> 144*
12(145) -> 146*
22(142) -> 143*
22(144) -> 145*
00(2) -> 4*
00(1) -> 4*
00(3) -> 4*
02(141) -> 142*
10(2) -> 1*
10(1) -> 1*
10(3) -> 1*
20(2) -> 2*
20(1) -> 2*
20(3) -> 2*
30(2) -> 5*
30(1) -> 5*
30(3) -> 5*
40(2) -> 6*
40(1) -> 6*
40(3) -> 6*
50(2) -> 3*
50(1) -> 3*
50(3) -> 3*
1 -> 99,71,37,21
2 -> 94,64,32,7
3 -> 105,77,43,23
12 -> 24,22,34,8,4
22 -> 8*
24 -> 8*
33 -> 107,45
34 -> 133*
36 -> 10*
38 -> 33*
44 -> 33*
50 -> 108,100,6
65 -> 79*
70 -> 24,8,4
72 -> 65*
78 -> 65*
83 -> 69*
96 -> 119*
97 -> 130*
98 -> 10*
100 -> 95*
106 -> 95*
110 -> 141*
111 -> 147*
112 -> 108,100,6
122 -> 96*
132 -> 96*
136 -> 121*
146 -> 96,119
148 -> 134*
problem:
Qed