Problem: 0(1(1(x1))) -> 1(2(1(2(0(x1))))) 0(3(1(x1))) -> 1(3(2(2(0(x1))))) 0(3(1(x1))) -> 3(2(1(2(0(x1))))) 0(3(1(x1))) -> 1(3(3(3(2(0(x1)))))) 0(4(1(x1))) -> 2(1(2(0(4(x1))))) 0(0(4(5(x1)))) -> 0(0(2(5(4(x1))))) 0(1(4(1(x1)))) -> 0(1(2(2(4(1(x1)))))) 0(1(4(5(x1)))) -> 4(0(1(2(5(4(x1)))))) 0(1(5(1(x1)))) -> 1(2(2(5(0(1(x1)))))) 0(1(5(3(x1)))) -> 0(5(3(2(1(x1))))) 0(2(4(1(x1)))) -> 1(3(3(2(0(4(x1)))))) 0(2(4(1(x1)))) -> 4(2(1(2(0(4(x1)))))) 0(2(4(5(x1)))) -> 0(2(2(5(0(4(x1)))))) 0(3(1(5(x1)))) -> 0(1(2(5(3(x1))))) 0(3(1(5(x1)))) -> 1(2(5(3(0(4(x1)))))) 0(3(5(1(x1)))) -> 1(2(5(3(0(x1))))) 0(3(5(1(x1)))) -> 0(5(2(1(2(3(x1)))))) 0(3(5(5(x1)))) -> 0(3(2(5(5(x1))))) 0(4(0(1(x1)))) -> 2(0(4(4(0(1(x1)))))) 0(4(1(5(x1)))) -> 1(2(5(0(4(x1))))) 0(4(3(5(x1)))) -> 0(4(3(2(5(4(x1)))))) 0(4(5(1(x1)))) -> 2(5(4(4(0(1(x1)))))) 3(0(1(5(x1)))) -> 3(1(4(0(5(4(x1)))))) 3(0(3(1(x1)))) -> 1(3(3(2(0(x1))))) 3(0(3(5(x1)))) -> 3(2(5(0(2(3(x1)))))) 3(3(0(1(x1)))) -> 0(1(3(2(2(3(x1)))))) 3(4(5(1(x1)))) -> 3(2(5(4(2(1(x1)))))) 4(1(3(5(x1)))) -> 1(2(5(3(4(4(x1)))))) 4(1(5(1(x1)))) -> 4(4(5(1(2(1(x1)))))) 4(4(1(5(x1)))) -> 4(1(2(5(4(x1))))) 0(1(4(5(5(x1))))) -> 0(5(1(4(2(5(x1)))))) 0(2(1(4(5(x1))))) -> 0(0(1(2(5(4(x1)))))) 0(2(1(5(5(x1))))) -> 0(1(2(2(5(5(x1)))))) 0(4(2(4(1(x1))))) -> 1(3(2(0(4(4(x1)))))) 0(4(5(4(3(x1))))) -> 2(5(0(4(4(3(x1)))))) 0(5(1(5(1(x1))))) -> 0(5(1(1(2(5(x1)))))) 0(5(2(1(5(x1))))) -> 1(2(5(5(0(4(x1)))))) 0(5(2(4(1(x1))))) -> 4(5(2(1(2(0(x1)))))) 3(0(1(4(1(x1))))) -> 0(4(4(1(3(1(x1)))))) 3(0(1(4(1(x1))))) -> 4(3(2(0(1(1(x1)))))) 3(0(3(5(5(x1))))) -> 3(3(2(5(0(5(x1)))))) 3(0(5(3(1(x1))))) -> 1(0(3(3(2(5(x1)))))) 4(0(1(4(1(x1))))) -> 4(4(0(1(3(1(x1)))))) 4(0(1(5(1(x1))))) -> 0(1(2(5(4(1(x1)))))) 4(0(2(4(5(x1))))) -> 4(0(2(5(0(4(x1)))))) 4(1(1(5(1(x1))))) -> 1(1(2(5(4(1(x1)))))) 4(5(1(4(1(x1))))) -> 4(4(1(2(1(5(x1)))))) 4(5(2(3(1(x1))))) -> 4(3(1(2(2(5(x1)))))) 4(5(4(3(1(x1))))) -> 4(1(2(5(3(4(x1)))))) 4(5(5(3(1(x1))))) -> 1(3(2(5(5(4(x1)))))) Proof: Bounds Processor: bound: 2 enrichment: match automaton: final states: {6,5,4} transitions: 11(80) -> 81* 11(37) -> 38* 11(32) -> 33* 11(9) -> 10* 11(131) -> 132* 11(111) -> 112* 11(81) -> 82* 11(46) -> 47* 11(11) -> 12* 11(68) -> 69* 11(43) -> 44* 11(120) -> 121* 11(110) -> 111* 21(45) -> 46* 21(35) -> 36* 21(10) -> 11* 21(67) -> 68* 21(119) -> 120* 21(109) -> 110* 21(79) -> 80* 21(121) -> 122* 21(66) -> 67* 21(8) -> 9* 21(130) -> 131* 51(65) -> 66* 51(97) -> 98* 51(82) -> 83* 51(77) -> 78* 51(47) -> 48* 51(64) -> 65* 51(34) -> 35* 51(96) -> 97* 51(71) -> 72* 51(108) -> 109* 51(135) -> 136* 41(107) -> 108* 41(134) -> 135* 41(99) -> 100* 41(94) -> 95* 41(49) -> 50* 41(133) -> 134* 41(48) -> 49* 41(105) -> 106* 01(147) -> 148* 01(7) -> 8* 01(69) -> 70* 01(21) -> 22* 01(33) -> 34* 01(23) -> 24* 01(95) -> 96* 12(143) -> 144* 12(145) -> 146* 22(142) -> 143* 22(144) -> 145* 00(2) -> 4* 00(1) -> 4* 00(3) -> 4* 02(141) -> 142* 10(2) -> 1* 10(1) -> 1* 10(3) -> 1* 20(2) -> 2* 20(1) -> 2* 20(3) -> 2* 30(2) -> 5* 30(1) -> 5* 30(3) -> 5* 40(2) -> 6* 40(1) -> 6* 40(3) -> 6* 50(2) -> 3* 50(1) -> 3* 50(3) -> 3* 1 -> 99,71,37,21 2 -> 94,64,32,7 3 -> 105,77,43,23 12 -> 24,22,34,8,4 22 -> 8* 24 -> 8* 33 -> 107,45 34 -> 133* 36 -> 10* 38 -> 33* 44 -> 33* 50 -> 108,100,6 65 -> 79* 70 -> 24,8,4 72 -> 65* 78 -> 65* 83 -> 69* 96 -> 119* 97 -> 130* 98 -> 10* 100 -> 95* 106 -> 95* 110 -> 141* 111 -> 147* 112 -> 108,100,6 122 -> 96* 132 -> 96* 136 -> 121* 146 -> 96,119 148 -> 134* problem: Qed